
DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software
Re-engineering

L. Bauerdick, K. Bloom, W. Brown, P. Elmer, V. Innocente, J. Kowalkowski,
M. Paterno, E. Sexton-Kennedy, W. Tanenbaum, L. Tuura, and A. Yagil

Revision 1.35

Contents

1 Introduction 2

2 Requirements, Constraints, and Guiding Principles 2

3 Overview of the Design 4

3.1 Interaction with External Systems . 5

3.2 Organization of the ROOT Output . 5

4 Usage Patterns for the Persistent Data 5

5 The Core Infrastructure 7

5.1 The EventStore . 7

5.2 EDProducts . 7

5.2.1 Constraints on an EDProduct and its Constituents 8

5.2.2 Common Bookkeeping Information . 8

5.2.3 Rules for EDProduct-derived Classes 9

5.3 Modules . 10

5.3.1 General Characteristics . 10

5.3.2 Types of Framework Modules . 10

5.3.3 EDProducers . 10

5.3.4 Mixing Modules . 11

5.3.5 Input and Output Modules . 11

5.4 Selectors . 11

5.5 The Scheduler System . 12

6 Facilities Used by the Core Infrastructure 12

6.1 Factories . 12

6.2 Services . 13

1

DRAFT
1.3

5

DRAFT
1.3

5

2

6.3 Threads . 13

6.4 Interfaces to Data Management . 13

6.5 The ParameterSet System . 14

6.5.1 ParameterSets . 14

6.5.2 Identifying Parameter Sets . 15

6.5.3 User Creation of Parameter Sets . 15

6.6 Non-Event Data . 15

6.7 Granularity of CalibrationIDs . 16

A Glossary of Terms 16

B Mapping Between Existing and Proposed CMS Concepts 17

1 Introduction

This document is a record of design decisions reached during a workshop held at Fer-
milab November 9–19, 2004. The participants were: L. Bauerdick, K. Bloom, W. Brown,
P. Elmer, V. Innocente, J. Kowalkowski, M. Paterno, E. Sexton-Kennedy, W. Tanenbaum,
L. Tuura, and A. Yagil.

This document is not a blueprint for design; it lacks many details. Instead, it cap-
tures the decisions reached at the aforementioned workshop. This document should
evolve into—or be replaced by—a detailed plan to guide progress toward the goals de-
scribed herein.

In §2, we recapitulate a number of the agreed-upon desiderata (requirements, con-
straints, and guiding principles) underlying the directions taken during the workshop
discussions. Next we present in §3 a high-level overview of the design, followed by a
discussion in §4 of the envisioned persistent data usage patterns. §5 details each layer
of the core infrastructure, while §6 identifies the facilities that the core infrastructure
relies on and uses. A glossary of technical nomenclature may be found in Appendix A.

2 Requirements, Constraints, and Guiding Principles

In this section we identify (in no special order) the underlying boundary conditions that
serve as this design’s underpinnings. We refer the reader to “CMS Core Software Review”
[Bloom, et al., November 29, 2004] for selected motivation, use cases, experience, and
other rationale underlying these desiderata.

1. A concrete class, directly corresponding to the concept of an event, is a required
part of the design.

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 3

2. The design is required to incorporate explicit framework modules that communi-
cate with each other only via the event class.

3. Data objects of the design are required:

• to be composed of only simple data, and
• to be isolated from the algorithms that create them.

4. There must be a system whereby modules can be scheduled for execution. This
requirement does not preclude support for alternative mechanisms (e.g., implicit
invocation). This system must be:

• efficient,
• deterministic, and
• easy to use.

5. A job that needs to look at XXX and YYY data (e.g., reconstruction, analysis, raw
data) must declare, up front, that it will access XXX and YYY data.

6. Event objects must be associated with appropriate metadata so that the metadata
can be used to identify interesting event data.

7. The physical design must be carried out so as to minimize library dependencies.

8. Consideration must be given to the future role of multithreading. The design must
achieve the traditional benefits of multithreading in order to justify its added com-
plexity, or else it must dispense with multithreading in its entirety.

9. A layered architecture is a required design element. The following major layers have
been identified:

• a data layer,
• an algorithm layer, and
• a module layer.

10. We must have the ability to load all libraries at program start time, before handling
of the first event. An important use case supporting this requirement is the HLT.
The mechanism for explicitly loading libraries must be robust and user-friendly.

11. Framework jobs will run within some work flow management system (see §6.4). It
is important to design the application framework with this system in mind. Con-
sideration of all outputs, including job status as well as all inputs is important.

12. To guarantee reproducibility, full information (e.g., algorithm parameters, calibra-
tion data) is required for “officially produced” event data. Such full information is
not required for development by individuals doing something other than “official
production.”

13. The following distinct usage patterns (see §4) for the persistent data must be sup-
ported:

• use from “bare” ROOT (i.e., no additional code or libraries needed),
• use from ROOT with a small set of basic general purpose libraries,

DRAFT
1.3

5

DRAFT
1.3

5

4

• use from ROOT with a medium set of libraries (a.k.a. “ORCA-lite”),
• use in the full reconstruction, trigger, and simulation programs.

3 Overview of the Design

The design expressed in this document is a prototype, and is not complete. As in any
software project of significant scope, details of the design may (and are likely) to change,
as better understanding of how to achieve the stated goal within the stated constraints
is achieved.

This document addresses only a part of the CMS software. Specifically, it describes
a re-engineering of the core software for event-processing applications. It describes:

• a framework for event-processing applications (hereafter called “the framework”),
and

• a set of classes for implementing a model of the event-data (hereafter called “the
EDM”).

This document addresses other software systems (e.g., the data management system)
insofar as to describe boundaries between the system with which the event-processing
applications interact, and to describe the responsibilities of each system.

The framework exists to make the task of writing reconstruction and analysis soft-
ware simpler. It is responsible for handling the ordering (i.e., scheduling) of event-
processing tasks to be performed. The objects that perform the event-processing tasks1

are called modules (see §5.3). The event-related data produced by event-processing are
represented by the classes of the EDM.

The application framework will support two different scheduling models:

1. explicit scheduling, in which the user directly specifies the ordering in which mod-
ules are to be run (see §5.5), and

2. no scheduling—also called reconstruction on demand, implicit invocation, and im-
plicit scheduling—in which the dependencies inherent in the data products deter-
mines the order in which modules are to be run (see §5.5).

Both scheduling models use the same modules and generate the same data products.
The only difference is how the execution of reconstruction steps are scheduled.

Modules never communicate directly with other modules; they communicate only
through objects passed to their functions. Modules that perform reconstruction, for
example, communicate only through an EventStore object (see §5.1), which behaves as
an in-memory database carrying information regarding the reconstruction (and perhaps
simulation) of a single beam crossing. Functionality that must be shared between mod-
ules will often be packaged as services (see §6.2).

1We include in “event-processing” the processing of groups of events, such as “runs,” etc.

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 5

Elements of the framework that are user-configurable (such as the schedule in an
explicitly scheduled application, and the various modules) are all configured using a
single parameter set system (see §6.5).

3.1 Interaction with External Systems

A framework application (or, perhaps, an application wrapper that invokes the event-
processing application) must communicate with several external systems. Such systems
include (but are not necessarily limited to):

• the parameter set system (see §6.5),
• various services (see §6.2), e.g., the calibration system,
• the data management system (see §6.4), which is responsible for access to files,

and
• the program status reporting system.

3.2 Organization of the ROOT Output

In order to support the use of ROOT described in §2, and especially to support direct use
of CMS data files from the ROOT prompt (see §4), the ROOT output files must follow a
strict organization.

Within a single file, event data will be written to one ROOT tree. This tree will have
one branch for each EDProducer instance (see §5.3.3), containing the output of that in-
stance. The names of the branches will be automatically generated, to allow the system
to ensure that there are no collisions. Most branch names will be in the form: “Class-
NameOfEDProduct:UniqueParameterSetID,” where “UniqueParameterSetID” is the pa-
rameter set ID of §6.5.2. It is possible, in rare circumstances, for this branch naming
algorithm to produce a collision. In cases where there is a branch with a duplicate name
in a particular tree, the algorithm will append “:2” to the new branch name; additional
digits will be used, if needed, to avoid further collisions. The branch names so gener-
ated will tend to be long, and thus not convenient for use at the ROOT prompt. We have
spoken with Philippe Canal, of the ROOT core development team, who told us that ROOT

can be extended to allow aliases for branch names. Such aliases will allow the user to
associate a short name with each branch. Such names will be usable from the DRAW

language, and from compiled functions called from the DRAW language.

4 Usage Patterns for the Persistent Data

Before discussing the details of the infrastructure, it would be useful to discuss the
usage patterns that must be supported (see §2) in more detail.

Classes in the event data fall into three categories:

DRAFT
1.3

5

DRAFT
1.3

5

6

Type 1 “Basic elements” (e.g., 3-vectors, 4-vectors). The representation in memory, and
the persistent representation, of such elements should be in terms of fundamental
(C++) types. No code should be needed to interpret such basic elements.

Type 2 “Higher level elements” (e.g., tracks, jets).
Type 3 “Packed raw data”.

Four usage patterns of the event data will be supported.

1. Use from “bare” ROOT.

To allow use of “bare” ROOT, the stored form of objects would have to be sufficiently
simple to allow their use without class libraries or code to support their use.

2. Use with a small set of libraries.

Use of the data in this pattern may require the use of classes of type “basic ele-
ments” above. The set of “basic elements” must be defined by CMS.

Analysis of data in this pattern shall not require access to external databases, and
thus event-data classes to be used in this pattern must be designed in a way to be
useful without such access.

3. Use with a medium set of libraries (“ORCA-lite”).

Use of the data in this pattern may require the use of classes of type “basic ele-
ments,” and may also require classes of type “higher level elements”.

Analysis of data in this pattern shall not require access to external databases, and
thus event-data classes to be used in this pattern must be designed in a way to be
useful without such access.

4. Use in the full reconstruction, trigger, and simulation programs.

Use of the data in this pattern may require the full suite of CMS libraries, and may
require connectivity to external resources.

We provide a brief example to demonstrate what is meant by use of “bare” ROOT to
access CMS event data (i.e., usage pattern 1).

Our example assumes a branch “ele” carrying electrons from one (electron finding)
module, and a branch “trk” carrying tracks from one tracking module. Our example
show how one might histogram the transverse momentum of the track associated with
each electron in the electron collection:

1 // We have stored in the Electron a data member that is a smart
2 // pointer named ’tk’, which contains an int named ’id’
3 t->Draw("trk.pt[ele.tk.id]")

If the electrons are sorted on pT , and one wanted to get the pT of the track associated
with the highest pT electron, then one would use:

1 // assuming electrons are sorted on pt...
2 t->Draw("trk.pt[ele[0].tk.id]")

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 7

5 The Core Infrastructure

5.1 The EventStore

There will be only one EventStore class.

Purpose: Responsible for managing lifetimes for each EDProduct it contains. Man-
ages relationships between EDProduct and metadata. Provides access to event data
(EDProducts) for any consumer of event data. Allows communication between “mod-
ules.”

A single EventStore instance corresponds to the detector output, reconstruction prod-
ucts, and/or analysis objects from a single crossing or the simulation of a single cross-
ing.

EventStore is a concrete class.

It is possible to allow different EventStore interfaces, or merely different member
functions, some of which perform ROD, and some of which do not.

• Any EDProduct should be immutable after insertion into the EventStore (see §5.2.3).

• The ParameterSet provenance of input objects to a particular EDProduct should
survive the dropping (dropping means not writing to the output file) of the original
input object.

The EventStore will use methods of the Selector class (see §5.4) to search for ED-
Products matching a given criterion.

An ancillary class of the EventStore will keep track of the full invocation sequence

1. EDProducer::produce,
2. EventStore::make,
3. EventStore::get.

This information will be used to build a provenance “record” to be associated with the
EDProduct.

5.2 EDProducts

Purpose: The basic unit of event data managed by the EventStore.

EDProduct is an abstract base class. Derived classes are also referred to as ED-
Products. Each instance of such a class represents a component of an event, and is
capable of persistence.

Each EDProduct instance has an ID that is unique within the event.

A “map” of the EDProduct instances for an event is kept in the event store.

DRAFT
1.3

5

DRAFT
1.3

5

8

An EDProduct that needs to be readable by bare ROOT may contain only built-in
data types (e.g., float, double, int), and must have the same shape in its transient and
persistent forms. The data members of such a class should have meaningful names
and allow simple use. Those EDProducts that need not be readable by bare ROOT (e.g.,
raw data) may be packed and may or may not require additional software in order to be
unpacked for browsing.

Each class that represents an EDProduct should be as simple as is feasible (with
respect to the four usage patterns we have documented). In particular, usage pattern
4 objects (i.e., objects that need external data to be usable) should be used only when
necessary (for functionality or performance).

EDProducts are often collections, but they are not required to be. They should not be
small.

5.2.1 Constraints on an EDProduct and its Constituents

There is a category of classes (for example, raw data) that do not have to be browsable
from ROOT. A packed format, which needs some software for interpretation, is accept-
able for such data. We do not imply that a packed format is required for such data.

How do we define which classes fall into this category? Some believe it is trivial to
decide for each class.

In order to obtain usage pattern 1 above, we place the following constraints upon the
implementation of the components of the EDM.

• Change of Shape is not allowed. The type of each component written to the file must
exactly match the type seen in memory. However, this does not prohibit “puffing,”
i.e., the component may have transient (i.e., not written to the file) members, pro-
vided that the values of such transient members are reproducibly determinable
upon reading of the component from the file. Also, this does not prohibit conver-
sion of a persistent item of a built-in type to a longer type (e.g., float to double) in
memory. However, any other form of packing is prohibited.

• A bit-packed representation is not allowed for any item that needs to be usable
from the ROOT prompt.

5.2.2 Common Bookkeeping Information

There are several purposes for saving bookkeeping information:

1. To allow users to identify the EDProduct they want by identifying

a) the type of the EDProduct

b) the name of the “module” instance that created it—this is not merely the name
of the class of that module; it is a name, unique within that executable, that
identifies a particular “module” instance

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 9

c) the configuration of the “module” that created it

d) the calibration data used by the “module” that created it

e) the processing step that created it.

f) the release of the software that created it.

This may not be an exhaustive list.

2. To provide summary information that the user can take elsewhere to look at the
actual parameter sets/calibrations/etc.

Sufficient bookkeeping information should be stored to allow re-production of the
same EDProduct instance. This is not yet resolved for simulation products; it may be
sufficient to reconstruct the entire event. There may also be a problem involving re-
gional reconstruction; this seems resolvable by identifying as part of the algorithm the
description of the region on which it acted.

This bookkeeping information will be used by the Selector class (see §5.4). Some
selectors will use all the information to make “perfect matches.” Other selectors can use
some of the information, and then possibly match more than one EDProduct.

Each EDProduct instance must be associated with its bookkeeping information.

5.2.3 Rules for EDProduct-derived Classes

• An EDProduct instance should not depend upon the classes that create it.

• An EDProduct instance should be immutable once it is it is made persistent.

Despite the immutability of an EDProduct, there are two ways in which an EDProduct
in the EventStore may be augmented:

• extensible collections: in which new objects may be added to collections already in
the EventStore.

• decoratable objects in collections: in which a new EDProduct is added to the Event-
Store and is associated with with an EDProduct already in the EventStore.

In addition, both “puffing” and “refitting” will be supported.

Puffing means expanding existing data in an EDProduct, using no event information
from outside that EDProduct. Outside non-event information (e.g., detector geometry)
used in creating the original EDProduct may be reused.

Refitting means generating a new EDProduct from an older one, using new and dif-
ferent information from outside the original EDProduct.

DRAFT
1.3

5

DRAFT
1.3

5

10

5.3 Modules

The purpose of a module is to encapsulate a unit of clearly defined event-processing
functionality, in an independently testable and reusable package.

5.3.1 General Characteristics

Here are some characteristics of Modules:

Modules is the generic term for all “workers” in the framework. Not all modules have
the same interface.

Modules are scheduled by the ScheduleBuilder, and invoked by the ScheduleExecuter.
Each Module instance is configured with a ParameterSet.

Modules must not interact directly with (i.e., call) other modules.

Only Modules are “configurable.” An internal algorithm is configured by “percolating”
ParameterSets to the algorithm, by the Module that contains the algorithm.

5.3.2 Types of Framework Modules

Here is a (possibly non-exhaustive) list of framework module types:

• event data producers

• mixing

• input

• output

• filter

• analyzers (readonly)

5.3.3 EDProducers

The only service of an EDProducer is to produce EDProduct instances and placing them
in an EventStore. This service is performed by its produce(EventStore& ev) method.

On invocation a transaction is started.

The EDProducer will create empty EDProducts by asking the EventStore to make them

Handle<EDP> it = ev.make<EDP>();

At this point, the EDProducer is ready to populate this EDProduct with the real re-
constructed objects.

If its algorithm requires information from the event, it will get it from the event-store
using its get(vector<Handle<EDP2> >& edps, const Selector& s).

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 11

5.3.4 Mixing Modules

A MixingModule takes in a sequence of const EventStores and merges corresponding
data objects from each into a single output merged EventStore which is passed back to
the framework. This is its only purpose.

5.3.5 Input and Output Modules

InputModule is an abstract base class.

The InputModule class provides the “interface” to read objects from the “I/O system.”
A “Database” model wil be used, that is, specific EDProduct instances will be explicitly
retrieved.

We discussed how the InputModule uses the data management system to deliver
requested events to the “user,” who specifies things like a “process step,” “code version,”
etc. The data management system resolves this to a set of files, but that isn’t enough—
because the user wants only some of the events in those files. The data management
system could also deliver an “event catalog” that says what events are to be included.
We have agreed that an event catalog is important.

CDF notes that a system that requires strict file delivery order causes trouble. Such
an ordering can avoid thrashing on “conditions data.” But the cost has been large for
CDF. Creation of an event directory reduces the need for strict file delivery ordering.

Event directories can live either in the data files (such as an AOD) or in their own
files. Different event directories can refer to the same data files. It seems critical that a
given process use whatever event directory the user “points at.”

5.4 Selectors

Selectors provide the mechanism by which one specifies what pieces (EDProducts) of an
event are of interest. They are the “query mechanism” of the EDM.

The EventStore uses get methods of the Selector class to search for EDProducts
matching a given criterion. Internally, the get methods use the bookkeeping information
to determine which EDProducts are a match.

In its main get method, match(const Handle<EDP>& edp), the Selector will search
in the event store for all EDProduct instances matching Selector.

EventStore also supports a get(Handle<EDP>& edp, const Selector& s) method
that will produce an error unless there is one and only one EDProduct instance matching
s.

DRAFT
1.3

5

DRAFT
1.3

5

12

5.5 The Scheduler System

The scheduler system is the subsystem in the framework that is responsible for execut-
ing the sequence of reconstruction steps in the appropriate order.

We will use a system that supports two mutually exclusive types of scheduling.

• explicit scheduling
• no scheduling

Which form of scheduling is used is at the option of the user running the program.

We have agreed to put off calculated scheduling; it may be reconsidered at a later
date.

The ScheduleBuilder is responsible for organizing the network of modules to be in-
voked, and assuring that they are invoked in the correct order. It builds the schedule
used by the ScheduleExecuter.

Both ScheduleBuilder and ScheduleExecuter are concrete classes.

The ScheduleBuilder is configured by the same system as the EDProducers.

The ScheduleBuilder must know the sequence of EDProducers for each “path,” and
how each EDProducer is configured.

The ScheduleExecuter must assume that each EDProducer may request stopping of
execution of that “path.”

The ScheduleExecuter deals with “framework tasks,” which may include checking
memory usage between EDProducer invocations.

The ScheduleExecuter should be able to decide what action should be taken upon
each return status of a Filter.

6 Facilities Used by the Core Infrastructure

6.1 Factories

Several parts of the core infrastructure (most importantly instances of framework mod-
ules, described in §5.3) are created in response to the user’s run-time configuration of
the application. The SEAL plug-in mechanism2, which implements the Abstract Factory
pattern, will be used for all classes which require support of the Abstract Factory pat-
tern. The core infrastructure will ensure that all use of dynamically loadable libraries
(.sos) follows the requirements described in §2.

2See http://seal.web.cern.ch/seal/snapshot/work-packages/pluginmanager/index.html.

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 13

6.2 Services

Several parts of the core infrastructure are implemented as services. A service is a
software component which provides, to other components (including modules, §5.3),
shared use of some facility. Most often, the configuration and updating of a service
is controlled by the framework itself, and not by the other components that use the
service. One example of a service is the calibration service which is responsible for
providing access to calibration data for the various detector elements. Reconstruction
modules (EDProducers, §5.3.3) make use of the calibration service but are not involved
with making sure that the correct calibration data are loaded; this is done “behind the
scenes” by the framework itself interacting with the calibration service.

Note that there is not an event service. We do not want users to have global access
to event data; in order to enhance the maintainability of the code, access to event data
is available (in a framework application) only through an EventStore instance, passed as
an argument into the code in question.

The SEAL component model3 will be used to implement services.

6.3 Threads

Non-framework code should not spawn threads. Most importantly, code in EDProducers
should not spawn threads, nor should it need to handling locks, mutexes, semaphores,
or other artifacts of multi-threaded programming. Such code is required to follow a few
simple rules (e.g., “never use static member data or function-local static data that is
non-const”).

6.4 Interfaces to Data Management

This topic was only started to be discussed, and the data management task will have to
work with the framework designers to firm up this section.

The data management system deals with all information the user needs to specify
the collection of events to be processed by the framework application. This “data set
discovery” information includes specifying

1. the offline stream/data set (defined as the class of events given by a physics
selection, like all triggers with a given trigger path, or a given event generator with a
given set of parameters, etc.)

2. data tiers

3. the kind of processing done on the related event data (production pass ID)

4. constraints on event ranges (e.g., 1 pb−1 of luminosity, or run range x, etc.)

3See http://seal.web.cern.ch/seal/snapshot/workbook/seal-component-model.html.

DRAFT
1.3

5

DRAFT
1.3

5

14

Event data files contain the actual event data, and do not contain all the relevant
non-event data. However, event data file may contain copies of subsets of this non-
event data.

Framework applications query the data management system to discover which data
sets meet the user’s specification. The input module(s) (see §5.3.5) interacts with the
data management system to map the data set to a collection of files to be processed. The
details of this interaction need to be designed in conjunction with the data management
task. A framework application knows only about a set of files, and perhaps a catalog
file, and processes those files.

The framework application, when it is running as a production job, is producing (a
set of) files containing event data. These will become part of CMS data sets through
an “import” operation into the CMS data management system. Thus, when event data
files are being written, descriptive information regarding the production and the physics
contents of these files must be made available to the data management and data set
book keeping system. Because event data are intended to be immutable, the frame-
work application must obtain all relevant information that would identify the event data
output as becoming part of a CMS data set before writing the event data files.

There are many open questions, only some of which have been addressed yet.

6.5 The ParameterSet System

6.5.1 ParameterSets

Some of the elements in a framework application can be configured at run-time by the
user. All such elements will be configured by a common parameter set system.

A ParameterSet contains a collection of name/value pairs, and provides type-safe
access to them. The contents of a ParameterSet are uniquely identified by a PS id. The
contained values can be anything from the following list:

• bool
• long
• std::vector<long>
• double
• std::vector<double>
• std::string
• std::vector<std::string>
• ParameterSet
• std::vector<ParameterSet>

It is important to note that parameter sets can be nested.

ParameterSets used for official production must be registered in a central database.
IDs for such parameter sets must be distinguishable from IDs associated with parameter
sets not registered in the central database.

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 15

ParameterSets can also be local; they then are associated with an ID unique within
the data file. Local ParameterSets are stored in the same file as the EventStores with
which they are associated.

An entire executable should be configured using a single ParameterSet, which con-
tains the many ParameterSets used to configure the Modules within that executable.
Each module should be configured with a single ParameterSet.

There should also be a related system of untracked parameter sets. These are similar
to ParameterSets in how they are presented to the user, but they do not have associated
IDs, and are not tracked in any repository. They are to be used to carry information
which does not need to be tracked in the bookkeeping system. One example of such in-
formation is the verbosity of the logging level used when running a program. Untracked
parameter sets should not be used to provide any configuration information that affects
the physics of reconstruction results.

6.5.2 Identifying Parameter Sets

There will be a central authority to assign unique IDs to ParameterSets and to store
those ParameterSets used in official processing. There will be, in addition, a local repos-
itory of ParameterSets, in the event data files themselves. This is needed, in part, to
allow use of reconstruction code without contacting the global authority—for purposes
other than official event processing.

PS ids are calculated from the contents of the ParameterSet by the MD5 algorithm,
giving a 16-byte identifier. This means if two IDs are different, the parameter sets to
which they refer are surely different. If two PS ids are the same, then it is very likely,
but not 100% certain, that the ParameterSets to which they refer are the same.

6.5.3 User Creation of Parameter Sets

A set of tools (such as a GUI parameter set editor) will be provided. Such tools are
needed to make creation and manipulation of ParameterSets simple.

6.6 Non-Event Data

We identify two different kinds of tracked metadata:

• Algorithm configuration data – we’ve been calling these ParameterSets. These have
a central authority to provide a unique ID for each instance of a parameter set.

• Calibration, survey, etc., data – these have a different central authority to issue
unique IDs. A single ID should suffice to specify all such data. We believe this can
be done by having a hierarchical organization of such calibration (etc.) data.

The system that handles “program configuration” parameters is not the same as the
system that deals with “calibration constant” data.

DRAFT
1.3

5

DRAFT
1.3

5

16

We began to discuss how to handle various sorts of metadata:

• Algorithm configuration data
• Calibration data
• Survey data

This may not be a complete list of all types of metadata.

6.7 Granularity of CalibrationIDs

It is possible to have a single CalibrationID refer to the whole set of calibrations used
in a program. This makes saving them simpler. It has a drawback that some piece
of reconstruction (for example, calorimeter towers) might not depend on part of the
calibration (for example, the muon calibration). If two calibrations differ only in a part
that does not matter, then saving a single ID that refers to the whole set makes things
that are not essentially different appear different.

A Glossary of Terms

It seems useful to agree up a set of terms to use for the various ideas we have been
discussing. Here is a working list of the terms we have used. This list is an uneven
mixture of items, some of which are very general and some of which are very specific.

EDProduct Abstract base class of “things” stored in the EventStore.

Sometimes we use the term EDProduct to mean an instance of a concrete class
which derives from EDProduct.

EventStore A concrete class. EventStore provides the interface used by Module code
(among other clients) to obtain EDProducts used for input, and also the interface
to which EDProducts are published.

Module Abstract base class of all the “worker units” manipulated directly by the frame-
work.

EDProducer A Module which puts EDProducts into the EventStore. Often, it will put
only one; it is allowed to put more.

ModuleFactory A ModuleFactory creates Module instances.

Subsystem A subsystem is a loose collection of objects which act together to perform
some clearly identifiable task.

DRAFT
1.3

5

DRAFT
1.3

5

Core CMS Event-Processing Software Re-engineering (Rev. 1.35) 17

B Mapping Between Existing and Proposed CMS Concepts

Many of the concepts described in this note find direct equivalent in most of the event
processing framework in use in High Energy Physics at least in terms of provided func-
tionalities. In most of the cases the mapping in not one to one among classes as archi-
tectures differ. The following description tries to map the functionality and interfaces of
the proposed system to the one present in COBRA. It mainly addresses classes present
in the user API. Due to the difference in architecture in some cases it details function-
alities that are hidden to the user but provided by one of the the classes described. The
new system is supposed to provide enhanced functionality, we address here only the
functionality that can be found in the current CMS software.

EventStore RawEvent and TRecEventWP classes are the closest concept in COBRA to
the proposed EventStore (at least from a structure point of view). Unlike EventStore,
these classes are not directly visible to the user. The services provided by EventStore
are currently dispersed in various proxy-layers such as G3EventProxy, RecCollec-
tion, PRecDet.

EventDataProduct COBRA (CARF) RawData class is the closest concept to EventDat-
aProduct one can find in the current CMS software. From a structure point of view
also TReconstructor class maps well EventDataProduct (it is what TRecEvent and
PRecEvent contain and return as result of a query. It acts as abstract container
of reconstructed data) but it encapsulate additional responsibilities (management
of reco on demand and of provenance tracking) that in the proposed model will be
left to the EventStore itself. In the proposed model an EventDataProduct will be
directly exposed as such to the user. In the current CMS software a set of proxy-
layers (RecCollection for instance) is interposed between the data objects managed
by the framework and the user her(him)self.

Module This concept does not exist as a unique abstract base class in COBRA. There
are many base super-types of “Worker units” that either use or populate (directly
or indirectly) the event: Observers, RecUnits, RecDets, RawSources, DBPopulator.
Some of the functionalities that in the proposed model are candidate to be respon-
sibility of a Module (in particular in the area of I/O) are currently implemented
directly in methods of the “Event” classes.

EventDataProducer RecUnit and its derived class RecAlgorithm are the closest con-
cepts in COBRA of the proposed EventDataProducer. Some functionalities related
to create and populate event data are currently provided by a combination of Raw-
Source, ReadOutUnit and BasePRecDet and their derived classes. These classes
will be replaced (for what these specific functionalities are concerned) with Event-
DataProducers.

Framework Such a concept is not encapsulated in a single class in COBRA. The func-
tionalities Framework will provide are currently dispersed in several CARF pack-
ages such as SimApplication, RecApplication, SimReader, RecReader.

DRAFT
1.3

5

DRAFT
1.3

5

18

ParameterSet The proposed ParameterSet package will provide the functionalities cur-
rently available in COBRA through SimpleConfiguration and ParameterSet. It will
also provide configuration management functionalities currently absent in COBRA.

Selector Selector objects will be used in place of the current RecQuery. The optimiza-
tion of the query mechanism itself will most probably involve some collaboration
among Selector, EventStore and ParameterSet that will replace and enhance what
currently is implemented in RecConfig, RecCollection and RecoRegistry.

